
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Tel.: +33 1

E-mail addr
Journal of Sound and Vibration 297 (2006) 432–443

www.elsevier.com/locate/jsvi
Short Communication

Shape optimization of noise barriers using genetic algorithms

D. Duhamel�
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Abstract

This article presents a method to find optimal shapes for noise barriers by coupling a boundary element solution of the

sound pressure around the barrier and an optimization process by genetic algorithms to minimize the sound pressure level

in a domain behind the barrier. The objective is not to provide geometries with immediate practical applications but to

estimate the improvement that could be obtained if noise barriers with improved shapes were used instead of the

traditional barriers built today. The method supposes given source and receiver positions and the calculation provides an

optimal shape for the barrier to reduce the sound pressure at receiver points over a specified frequency band. Different

examples are presented to estimate the influence of the source and receiver positions, of the frequencies and the influence of

the size of the barrier. The main conclusion is an estimate of the potential improvement of noise barriers efficiency by using

better geometries.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

To reduce the noise in the vicinity of roads, one usually builds noise barriers to protect buildings behind the
barrier. The design of efficient barriers able to substantially reduce the noise is thus an important question in
environmental noise protection. It is well known that the position and the geometry of the barrier, mainly its
height, are important parameters to estimate the efficiency of the barrier. However, for aesthetic or practical
reasons, it is not suitable to build barriers of very large heights. Thus, for improving barrier efficiencies,
it is necessary to design new shapes and covering of barriers to try to improve their performances for a given
total height.

Several authors have addressed these questions from an experimental or a numerical point of view. For
barriers with complex shapes which cannot be calculated by analytical methods, Seznec [1] proposed to
develop calculations by the boundary element method (BEM) to estimate their efficiency with precision. Then,
Hothersall et al. [2,3] calculated the performances of various noise barriers by two-dimensional (2D) boundary
elements. They studied a range of barrier forms including straight, circular, Y and T shapes and different
surface coatings and found that a T shape can provide clear improvements in barrier efficiency in the shadow
zone. In Ref. [4], numerical calculations and scale model studies of multiple noise barriers were obtained and it
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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was found that multiple barriers also provide a significant improvement over single barriers. Other studies
comparing various barriers were also done by Ishizuka and Fujiwara [5] for a large range of shapes.

Many experimental studies were also done to estimate the influence of barrier shapes on their performances.
In Ref. [6] scale models were used to experimentally test various noise barrier shapes and the authors in Ref.
[7] calculated and also tested with scale models different straight, circular and T shape barriers with reactive
surfaces. Both found that some shapes, for instance the T shape with absorbent covering, provide clear
improvement over straight barriers. Full scale tests were conducted by Watts et al. [8], Watts [9], and Watts
and Morgan [10] to compare the efficiency of T shape, multiple edge barriers and double barriers. An
improvement from 1 to 3 dB over simple plane reflective barriers of identical height was found.

Finally, Shao et al. [11] and Ho et al. [12] proposed noise barriers with random edge profiles to decrease the
coherence in the diffracted sources. They obtained some improvements over a traditional straight barrier
especially at high frequencies. Experiments were also done on random edge noise barriers and an improvement
was found except for low frequencies.

In these earlier studies, the authors proposed different barrier shapes with or without covering materials and
they tested their efficiency by numerical calculations or by doing experiments. For improving the efficiency
they try to imagine different shapes, for instance by changing the top of the barrier and then they estimate
experimentally the benefit obtained in noise reduction. However, these approaches suffer from the lack of a
systematic method to obtain good shapes.

In this work, we propose a different approach by coupling a BEM with a genetic algorithm optimization
process to obtain improved geometries. In the first part of the article we outline the techniques of the BEM
and the optimization by genetic algorithms. Then we present some examples of calculation for different
configurations. The objective of this article is not really to provide optimal geometries with immediate
practical applications but rather to estimate the potential improvement in noise barrier efficiency that can be
obtained by using better geometries than the conventional ones.

2. Calculation of optimal shapes

2.1. Sound pressure calculation

The problem that we are studying in this article is described in Fig. 1 where a noise barrier of arbitrary shape
is presented. We consider only the 2D case which is sufficient if we study only propagation paths normal to the
barrier. In Ref. [13], it was shown that 2D and 3D calculations of noise barriers lead to the same insertion loss
for a normal propagation. A source radiates noise on one side of the barrier and the objective is to reduce the
sound pressure level on the other side. In this article, to simplify and to enlighten the effect of barrier shapes,
the ground and the barrier are supposed rigid. The sound pressure around the barrier for harmonic waves with
the time dependence e�iot is the solution of the Helmholtz equation

r2pðx;oÞ þ k2pðx;oÞ ¼ sðx;oÞ, (1)
Sound source 

Control points  

Fig. 1. Noise barrier of complex shape.
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where p is the sound pressure at point x and for frequency o, k ¼ o=c is the wave number, c is the sound
velocity and s(x, o) is the source term in the fluid medium which for a point source of amplitude A at xs equals
�Ad(x�xs). In the following unit amplitude is used. As the barrier and the ground are rigid the sound pressure
is such that the normal derivative equals zero on the barrier and on the ground:

qp

qn
¼ 0. (2)

Moreover the sound pressure is such that the Sommerfeld condition is satisfied at infinity:

lim
r!1

qp

qr
� ikp

� �
¼ o

1ffiffi
r
p

� �
. (3)

For barriers with complex shapes the pressure can be calculated by the BEM. Details on calculations by
BEMs can be found in Refs. [13–15]. As is well known, the BEM suffers from nonuniqueness of the solution at
a discrete set of frequencies. These are associated with the resonance frequencies of the domain interior to the
barrier. The problem can be solved by the Burton and Miller formulation [16], which consists in solving
another equation obtained by taking the usual boundary integral equation plus its normal derivative
multiplied by a complex constant. Details on the precise form of the BEM used here can be found in Ref. [17].

2.2. Genetic algorithms and cost functions

In the following we are interested in minimizing the sound behind the barrier. So our cost function is

J ¼ 10 log10
1

npnf

Xnf

i¼1

Xnp

j¼1

jpðxj ;oiÞj
2

" #
. (4)

This is the value in decibels of the average of the square of the sound pressure over a number np of points
behind the barrier and over nf frequencies. Changing the number of points can lead to small or large control
zones behind the barrier. The number of frequency points can lead to a control over a wide band of
frequencies for nf large or at a unique frequency if nf ¼ 1.

As J can be a very complicated function of the barrier shape, of the frequency and of the control points, and
since it can only be estimated numerically, a sophisticated optimization process is necessary. Genetic
algorithms are optimization algorithms used for solving complex problems associated with cost functions
having many local minima. A general description of genetic algorithms can be found in Refs. [18,19]. This
method is a direct optimization method which means that it only needs the evaluation of the function without
requiring its derivatives. This is well adapted to our problem because the derivative of the cost function (4) is
complicated to calculate. The mathematical problem is to find the minimum of a cost function J with real
values defined on a parameter set. The parameters are coded as finite-length strings over some finite alphabet.
For the present problem a parameter is a shape for the barrier with the constraint of being included in a
rectangle to avoid too large barriers.

The coding process is obtained by approximating the geometry of the barrier by small rectangles which can
be filled by matter (1) or can be empty (0). An example is given in Fig. 2. So the geometry is coded by a
rectangular matrix of zeros and ones. Then from such a matrix of zeros and ones, one has to define the
geometry of the barrier. The first step is to remove the interior holes which are not connected to the fluid
domain. Then the boundary of each connected domain defines the barrier boundary, a detailed example is
given in Fig. 3. It is then meshed by usual techniques of the BEM. The mesh is made with quadratic three
nodes elements which were found to provide a better precision than linear two nodes elements. Each
elementary rectangular part of the shape (a 1 in the 0/1 coding) is meshed with 8 elements per wavelength of
the highest frequency tested, here 2000Hz. Then a computation by the BEM and a simple post-processing of
the results allow calculating the cost function (4). This provides a value of the cost function J for each matrix
of zeros and ones produced by the genetic algorithm.

Genetic algorithms define crossing, mutations and selections on a set of individuals. At each generation the
individuals reproduce, survive or disappear according to the values of the cost function of each individual. At
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1 1 1 
1 0 1 
1 0 1 
1 0 1 
1 1 1 
1 0 1 
1 1 1 
1 0 1 

1 1 1 
0 1 0 
0 1 0 
0 1 0 
0 1 0 
0 1 0 
0 1 0 
0 1 0 

Fig. 2. Building of the geometry from binary data.

1 1 1 
1 0 1 
1 0 1 

1 0 1 
1 1 1 
1 0 1 
1 1 1 
1 0 1 (a)

(b)

(c) 

Fig. 3. Example for a rectangular barrier: (a) fill the 1 in the matrix to build the first step of the geometry, (b) remove the interior holes and

(c) build the boundary of the domains.
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each step the algorithm selects which individual can reproduce and which individual disappears such that the
size of the population is constant. The creation of new individuals from the current population and the
evolution of populations can be obtained from two processes: crossing and mutation. In the crossing process
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1 0 0 0 1 1  0 0 0 1 1 0 0 0 0 

0 1 0 0 0 0 1 0  0 0 0 1 0 0 1
(a) (b) (c)

Fig. 4. One point crossing of two genotypes with (a) the original two chromosomes, (b) the splitting of the two chromosomes and (c) the

two final chromosomes obtained by exchanging the second parts shown in (b).

1 0 0 0 1 1 0 1 0 1

(a) (b)

Fig. 5. Example of mutation operator by changing third bit: (a) before mutation and (b) after mutation.
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presented in Fig. 4, from two parents, a new individual is obtained by cutting the chromosome at a random
location and exchanging the two parts. The crossing rate defines which proportion of the population is
submitted to this operation. Tests on this parameter were made between 0.60 and 0.90. The results show that a
parameter between 0.7 and 0.8 leads to interesting convergence rates which are stable over different runs while
other values can be good on a run and very bad for another. In the following examples this parameter is set to
0.75. The second operator is the mutation which is a random exchange between 0 and 1 on the bits of the
chromosomes with a small probability, see Fig. 5 for an example. The mutation rate was tested between 0.001
and 0.05. Too large values must be avoided because they lead to poor convergence. In the following this
parameter equals 0.002. These operators avoid a stagnation of the algorithm on local minima and allow a
global search of the optimum. The population size was set to 10. Increasing this number could give better
results but at the price of much longer computing times. After the mutation process the best individuals are
kept to form the new population. At each generation 25% of the individuals are replaced. In the calculation
presented here the C++ library Galib [20] is used and more specifically the GA2DBinarystring class which is
well adapted for a chromosome described by a matrix of zeros and ones.

3. Results

3.1. Efficiency of straight and T shape barriers

As a basis for a comparison with the following calculations, the sound pressure for a straight wall of width
0.1m and for a T shape wall is calculated. Theses walls are presented in Fig. 6. The origin of the coordinate
system is defined at the bottom centre of the barrier. The sound source is located at point (�5m, 0) on the
ground and it radiates the pressure iA/4H0(kr) in free field. The sound velocity is 340m/s. We are interested by
the sound pressure behind the barrier and we define the zone 1 by the five points given in Table 1. This is
a square zone of area 0.25m2, see Fig. 6. A second and larger zone, denoted zone 2, is defined in Table 2 with
20 points.

The values of the cost functions for the straight and T shape barriers are given in Table 3. The function J125
is the cost function defined by formula (4) for the frequency 125Hz, while J2000 is the same for the frequency
2000Hz and J125–2000 is the cost function obtained by taking the average on the five frequencies 125, 250, 500,
1000 and 2000Hz in formula (4). The T shape wall is a little more efficient than the straight wall by 1 to 3 dB
depending on the frequency. The average level in zone 2 is a little larger than in zone 1, which seems quite
reasonable as much more points are involved in the calculation of the cost function.

3.2. Convergence of the algorithm

We first test the convergence of the genetic algorithm. The barrier is defined from a mesh of 5� 20
rectangles inside the rectangular domain such that �0.25mpxp0.25m and 0mpyp2m. Each elementary
rectangle can be filled or empty as explained previously. A computation is done with 1000 iterations for the
cost functions at 125 and 2000Hz and with 500 iterations for the cost function including the five frequencies
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Table 1

Coordinates of the points defining the zone 1

Points P1 P2 P3 P4 P5

X(m) 2 2.5 2 2.5 2.25

Y(m) 1 1 1.5 1.5 1.25

Table 2

Coordinates of the points defining the zone 2

Points P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

X(m) 2 3 4 5 2 3 4 5 2 3

Y(m) 0 0 0 0 0.5 0.5 0.5 0.5 1 1

Points P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

X(m) 4 5 2 3 4 5 2 3 4 5

Y(m) 1 1 1.5 1.5 1.5 1.5 2 2 2 2

Table 3

Cost functions for the reference walls relative to the values for the straight barrier with zone 1

J (dB) zone 1 J (dB) zone 2

Straight wall 125Hz, J125 0 +2.4

Straight wall 2000Hz, J2000 0 +1.3

Straight wall 125–2000Hz, J125–2000 0 +1.6

T wall 125Hz, J125 �0.9 +0.5

T wall 2000Hz, J2000 �3.0 �0.4

T wall 125–2000Hz, J125–2000 �1.8 �0.5

(a) (b) 

2m

0.5m

2m

0.1m 

0.1m 0.1m

x

y y

P5 

x

P3

P1 

Control points 

P2

P4

Fig. 6. Straight and T shape barriers.
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125, 250, 500, 1000 and 2000Hz. The evolution of the cost function for five runs with different initial seeds is
presented in Fig. 7. To avoid a too complex figure only the best and worst values of the cost function are
presented at each step. One can see a rapid decrease of the cost function during the first 100 iterations and a
slower decrease after. The final values of the cost functions for each case are given in Table 4. The dispersion
between the different runs is rather important. It is about 2 dB except for 2000Hz where it reaches 5 dB. From
these results, one can see that it is better to do several computations to get a reasonable estimate of the best
configuration for each problem.
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Fig. 7. Evolution of the sound pressure level for the best and worse cases on five runs with the iteration number for the frequencies 125Hz

(a), 2000Hz (b) and for 125–2000Hz (c); — best value for five runs, - - - - - worse value for five runs.

Table 4

Cost functions relative to the values for the straight wall for 5 runs after 1000 iterations for 125 and 2000Hz and after 500 iterations for the

band 125–2000Hz

J125 (dB) J2000 (dB) J125–2000 (dB)

Optimization 1 �14.3 �7.6 �9.6

Optimization 2 �12.8 �12.0 �9.8

Optimization 3 �12.2 �9.0 �8.5

Optimization 4 �13.5 �8.1 �7.5

Optimization 5 �13.4 �8.5 �10.0

Best �14.3 �12.0 �10.0

D. Duhamel / Journal of Sound and Vibration 297 (2006) 432–443438
From the curve presenting the cost function for the five frequencies between 125 and 2000Hz, one observes
that the cost function does not change a lot after 300 iterations. For the calculation at 125 and 2000Hz the
larger decrease in the sound pressure level is also obtained after 300 iterations. To save computing time, the
following calculations will be stopped after 300 iterations. Of course this value is arbitrary and is only defined
as a compromise between the quality of the result and the computing time.

In Fig. 8, computations are made for the frequencies 500 and 2000Hz to test the influence of the number of
runs. The minimum of the cost function is presented for five and ten runs. Very little differences can be seen
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Fig. 8. Minimum values of the cost functions: (a) frequency 500Hz and (b) frequency 2000Hz with: — minimum for five runs, - - - - -

minimum for 10 runs.
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between the two curves. So it seems that doing five runs is quite sufficient to have a good estimate of the
minimum of the cost function.

3.3. Shapes of the barriers

The final shapes of the best barriers for the frequencies 125, 2000Hz and for the band 125–2000Hz are
presented in Fig. 9. It can be seen that the shapes are complex and quite different with the frequency. They can
also be multiconnected with holes inside. Such shapes would be difficult to obtain with simpler optimization
methods relying on continuous displacements of some points on the boundary of the walls. If we look at the
shape of the top of the barrier, it seems in Fig. 9b and c that interference effects between the different parts of
the barrier should be responsible for the improvement of this barrier over conventional ones. On the contrary
at 125Hz in Fig. 9a the shape of the top of the barrier is simple as we cannot expect interesting interferences at
this frequency.

From these results it can be seen that gains of about 14 dB at 125Hz and 12 dB at 2000Hz are obtained for
the control zone 1 if we compare to the sound pressure level of a straight barrier (see Table 4). A decrease of
10 dB relative to the straight barrier can also be observed in the frequency band 125–2000Hz. So it seems
possible to build a barrier much more efficient than the usual ones for a large frequency band.

3.4. Influence of the size of the control zone and of the barrier

In Fig. 10 the results for the cost function J125–2000 for the control zone 2 are presented. The final value of
the cost function for the best run is 46.3 dB. In the case of a control in zone 1, the final value was about
41.8 dB. So the increase in the size of the control zone leads to a loss of 4.5 dB in the average sound pressure.
For the T shape barrier this final value was 51.3 dB. The result of the shape optimization of the barrier is still a
gain of 5 dB over the T shape.

The final shape of the barrier for the best run is presented in Fig. 11. It looks like the complex shapes of
Fig. 9. A comparison of the sound pressure near the barrier for a T shape and for the optimal shape is given in
Fig. 12. It can be observed a decrease in sound pressure level behind the barrier of about 5 dB as indicated by
the value of the cost function. The black part of the figure indicates the zone where the optimal shape has
reduced the sound pressure level by about 8 dB in comparison with the T shape. One can see that the zone
where the sound pressure level has been reduced includes most of the zone behind the barrier showing that the
new shape is efficient on a zone of significant size and is not limited to the points where the control is done.
The shape of the barrier includes a lonely square on the left side. A computation was made with this square
omitted. The value of the cost function is 46.3 dB with the initial geometry and 46.9 dB with the square
omitted. So the difference between the two cases is small. However, a closer look at the results show that the
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Fig. 9. Final shapes of the barriers for the best runs and for the frequencies 125Hz (a), 2000Hz (b) and for 125–2000Hz (c).
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difference in sound pressure level is very small for the frequencies 100, 250, 500 and 1000Hz while it is 8 dB for
2000Hz. So the lonely square acts by improving the diffraction at 2000Hz and has no influence for the other
frequencies.

Another computation is made for a barrier meshed with 8� 20 rectangles over the rectangular surface such
that �0.4mpxp0.4m and 0mpyp2m, which is a little larger than before. The results are presented in
Fig. 13 for the frequency band 125–2000Hz and the control zone 1. The final value of the cost function is
44.9 dB which is not better than for the smaller size of the barrier where it was 41.8 dB. So it seems that
increasing the horizontal size of the barrier decreases the convergence speed of the algorithm rather than
improving the final result.

3.5. Position of the source

As a final test, the barrier in Fig. 11 is calculated for other positions of the source to see if the optimal shape
for a position of the source and a control zone is still interesting for other positions of the source. The cost
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Fig. 11. Optimal shape for the frequencies 125–2000Hz and the control zone 2.

Fig. 10. Evolution of the sound pressure level with the iteration number for the frequencies 125–2000Hz and the control zone 2; — best

value for five runs, - - - - - worse value for five runs.

D. Duhamel / Journal of Sound and Vibration 297 (2006) 432–443 441
function J125–2000 is used with the control zone 2. The sound source is now positioned at (�3, 0.5) and then at
(�7, 0.1). The values of the cost function for the T shape and for the shape of Fig. 11 for these three positions
of the sound source are given in Table 5. It can be seen that the optimal shape is better than the straight shape
for the three sound source positions by at least 7 dB. So the optimal shape of a barrier found for a source
position can also be interesting for a large set of source positions.
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Fig. 12. Difference between the sound pressure levels for the optimal barrier and the T shape barrier for the frequencies 125–2000Hz and

the control zone 2. The black zones are the domains where the sound pressure level is reduced by using the optimal shape. The source is on

the ground at 5m on the left of the barrier.

Fig. 13. Evolution of the sound pressure level with the iteration number for the frequencies 125–2000Hz and a large barrier: — best value

for five runs, - - - - - worse value for five runs.
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4. Conclusions

An optimization method based on a coupled BEM and genetic algorithm was built to find optimal noise
barrier shapes. Interesting results can be obtained in some hundred steps of the genetic algorithm. Complex
shapes were obtained which could be difficult to build in a practical application. However, the most interesting
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Table 5

Cost functions for T and optimal shapes for different sound source positions

J125–2000 (dB)

T shape, source position 1 (�5,0) �2.1

T shape, source position 2 (�3,0.5) �4.6

T shape, source position 3 (�7,0.1) �2.6

Optimal shape, source position 1 (�5,0) �7.0

Optimal shape, source position 2 (�3,0.5) �9.4

Optimal shape, source position 3 (�7,0.1) �7.5

The values are given relatively to the straight wall with the source position (�5, 0).
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fact in these results is the proof that the attenuation obtained with traditional straight or T shape noise
barriers seems far from optimal. At least a further 5 dB in efficiency could be obtained by a better design of the
barrier. This study was done for rigid barriers and only the shape was optimized but of course the covering of
the barrier could also be optimized in a future study to get still better results. Practical realizations would also
need an improved cost function to avoid the generation of barriers with too complex shapes.
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